
XY2_SCALER

Bilinear Video Scaling Engine
Rev. 2.1

Key Design Features

● Synthesizable, technology independent VHDL IP Core

● Versatile 24-bit RGB/YCbCr video scaler capable of scaling up
or down by any factor. Different pixel formats supported on
request

● 24-bit accumulator with 24-bit scale-pitch in [24 12] format

● Supports all video resolutions between 16x16 and 216x 216
pixels

● Fully pipelined architecture with simple flow control

● Features a 2x2 polyphase filter in the x and y dimensions.
Each filter has 16 unique phases or interpolation points

● Fully programmable filter coefficients to suit the desired
application

● Example bilinear coefficients shipped with the design

● Output rate is 1 x 24-bit pixel per clock for scaling factors > 1

● Generates one scaled output frame for every input frame

● No frame buffer required

● Supports 250MHz+ operation on basic FPGA devices1

Applications

● High quality 24-bit RGB/YCbCr video scaling

● Conversion of popular video formats to any other resolution
such as VGA to XGA, SVGA to HD1080 etc.

● Digital TV set-top boxes and home media solutions

● Conversion to non-standard video resolutions - e.g. for use in
portable devices and flat-panel displays

● Dynamic scaling of video in a window on a frame-by-frame
basis

● Picture in Picture (PiP) applications

Generic Parameters

Generic name Description Type Valid range

line_width Width of linestores in
pixels

integer 24 < pixels < 216

log2_line_width Log2 of linestore width integer log2(line_width)

1 Xilinx® Virtex6 used as a benchmark

Block Diagram

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

scale_pitch_x [23:0] in 1 / (x scale factor)

Specified as an unsigned
number in [24 12] format

data

scale_pitch_y [23:0] in 1 / (y scale factor)

Specified as an unsigned
number in [24 12] format

data

input_ppl [15:0] in Number of pixels per line in
the source input frame
(Specified as an unsigned
16-bit number)

data

input_lpf [15:0] in Number of lines per frame
in the source input frame
(Specified as an unsigned
16-bit number)

data

output_ppl [15:0] in Number of pixels per line in
the scaled output frame
(Specified as an unsigned
16-bit number)

data

output_lpf [15:0] in Number of lines per frame
in the scaled output frame
(Specified as an unsigned
16-bit number)

data

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 1 of 5

Figure 1: Video scaler architecture

http://www.zipcores.com/bilinear-video-scaling-engine.html

XY2_SCALER

Bilinear Video Scaling Engine
Rev. 2.1

Pin-out Description cont ...

Pin name I/O Description Active state

pixin [23:0] in 24-bit pixel in data

pixin_vsync in Vertical sync in
(Coincident with first pixel
of input frame)

high

pixin_hsync in Horizontal sync in
(Coincident with first pixel
of input line)

high

pixin_val in Input pixel valid high

pixin_rdy out Ready to accept input pixel
(Handshake signal)

high

pixout [23:0] out 24-bit pixel out data

pixout_vsync out Vertical sync out
(Coincident with first pixel
of output frame)

high

pixout_hsync out Horizontal sync out
(Coincident with first pixel
of output line)

high

pixout_val out Output pixel valid high

pixout_rdy in Ready to accept output
pixel
(Handshake signal)

high

General Description

XY2_SCALER is a very high quality video scaler capable of generating
interpolated output images from 16x16 up to 216 x 216 pixels in resolution.
The architecture permits seamless scaling (either up or down) depending
on the chosen scale factor. Internally, the scaler uses a 24-bit
accumulator and a bank of polyphase FIR filters with 16 phases or
interpolation points. All filter coefficients are programmable, allowing the
user to define a wide range of filter characteristics.

Pixels flow in and out of the scaling engine in accordance with the valid-
ready pipeline protocol. Pixels are transferred into the scaler on a rising
clock-edge when pixin_val is high and pixin_rdy is high. Likewise, pixels
are transferred out of the scaler on a rising clock-edge when pixout_val is
high and pixout_rdy is high. As such, the pipeline protocol allows both
input and output interfaces to be stalled independently.

The scaler is partitioned into a horizontal scaling section in series with a
vertical scaling section as shown by Figure 1.

Scale pitch, pixels per line and lines per frame

The output resolution of the scaled output image is controlled by the
generic parameters scale_pitch_x, scale_pitch_y, input_ppl, input_lpf,
output_ppl and output_lpf. The scale pitch may be calculated using the
following formula:

pitch = (
Input resolution
Output resolution

) ∗ 212

As an example, consider the scaling of VGA format video (640x480) to
XGA format video (1024x768). In this case the scale pitch in the x and y
dimensions would be 0.625. As the value must be specified as a 12.12-
bit number the actual scale pitch must be multiplied by 212 giving the
generic value '2560'.

In addition the user must also specify the exact resolution of the source
input frame and the scaled output frame using the parameters: input_ppl,
input_lpf, output_ppl and output_lpf. The following tables give a list of
generic parameters required for the conversion of some example video
formats.

SCALE UP

Video
IN

Video
OUT

Pitch
X

Pitch
Y

I/P
PPL

I/P
LPF

O/P
PPL

O/P
LPF

VGA
640x480

SVGA
800x600

3277 3277 640 480 800 600

SVGA
800x600

XGA
1024x768

3200 3200 800 600 1024 768

XGA
1024x768

HD1080
1920x1080

2184 2913 1024 768 1920 1080

SXGA
1280x1024

2K
2048x1080

2560 3884 1280 1024 2048 1080

SCALE DOWN

Video
IN

Video
OUT

Pitch
X

Pitch
Y

I/P
PPL

I/P
LPF

O/P
PPL

O/P
LPF

SVGA
800x600

VGA
640x480

5120 5120 800 600 640 480

XGA
1024x768

SVGA
800x600

5243 5243 1024 768 800 600

HD1080
1920x1080

XGA
1024x768

7680 5760 1920 1080 1024 768

2K
2048x1080

SXGA
1280x1024

6554 4320 2048 1080 1280 1024

Flow control

Pixels flow in and out of the scaling engine in accordance with the valid-
ready pipeline protocol2. The scaling operation occurs on a line-by-line
basis with the signal pixin_hsync specifying the start of a new line and
pixin_vsync specifying the start of a new frame. All pixels into the scaler
(including pixin_vsync and pixin_hsync) must be qualified by the pixin_val
signal asserted high, otherwise changes to the input signals will be
ignored. Note that the first pixel of a new frame is accompanied by a
valid vsync and hsync. The first pixel in a new line is accompanied by
hsync only.

On receipt of the first vsync, the scaling operation begins and output
pixels are generated in accordance with the chosen scale parameters.
Generally, for scale-down (decimation) operations, the input interface will
not stall. Conversely, for scale-up (interpolation) the number of output
pixels will be greater than the number of input pixels. This will result in
the occasional stalling of the input due to the change in ratio.

2 See Zipcores application note: app_note_zc001.pdf for more
examples of how to use the valid-ready pipeline protocol

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 2 of 5

http://www.zipcores.com/bilinear-video-scaling-engine.html

XY2_SCALER

Bilinear Video Scaling Engine
Rev. 2.1

Loading of scale parameters

The scale parameters are fully programmable and allow the input video to
be scaled differently on a frame-by-frame basis. With careful design, the
architecture also permits different video sources to be multiplexed into the
same scaler with different scaling parameters.

Parameters are updated continuously on every rising clock edge and
must remain stable during the scaling operation. When programming new
scale parameters (e.g. due to a change of video mode) it is necessary to
assert the system reset signal for at least one clock cycle to avoid any
possible corruption in the output video. This is often convenient to do
during the vertical blanking period of an input video frame when there are
no active pixels. After reset the scaler will lock to the next clean input
frame before the scaling operation continues.

Scaling algorithm

The scaler uses a 2-tap polyphase filter in the x-dimension and a 2-tap
polyphase filter in the y-dimension. By default, the x and y filters use
bilinear interpolation (Figure 2). In addition, the user may also use a
different function to derive the filter coefficients depending on the
application3.

3 See Zipcores application note: app_note_zc003.pdf for examples of
how to generate coefficient sets

Functional Timing

Figure 3 shows the signalling at the input to the scaler at the start of a
new frame. The first line of a new frame begins with pixin_vsync and
pixin_hsync asserted high together with the first pixel. Note that the
signals pixin, pixin_vsync and pixin_hsync are only valid if pixin_val is
also asserted high. In addition, the diagram shows what happens when
pixin_rdy is de-asserted. In this case, the pipeline is stalled and the
upstream interface must hold-off before further pixels are processed.

Figure 4 shows the signalling at the output of the scaler. The output uses
exactly the same protocol as the input. Each new output line begins with
pixout_hsync and pixout_val asserted high. In this particular example, it
shows pixout_val de-asserted for 1 clock-cycle, in which case, the output
pixel should be ignored. Remember that transfers at a valid-ready
interface are only permitted when valid and ready are both simultaneously
high.

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 3 of 5

Figure 2: Bilinear function – x and y filter tap positioning

Figure 3: First line of a new frame

Figure 4: Scaler output showing invalid pixel

http://www.zipcores.com/bilinear-video-scaling-engine.html

XY2_SCALER

Bilinear Video Scaling Engine
Rev. 2.1

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

video_in.txt Text-based source video file

video_file_reader.vhd Reads text-based source video file

pipeline_reg.vhd Pipelined register element

pipeline_shovel.vhd Pipelined 'shovel' register

ram_dp_w_r.vhd Dual port RAM component

fifo_sync.vhd Synchronous FIFO

x2_buffer.vhd Pixel input buffer/shift register

x2_filter_pack.vhd Package containing x-filter coefficients

x2_filter_polyphase.vhd Horizontal scaler output pixel filter

x2_scaler.vhd Horizontal scaler component

y2_buffer.vhd Line buffer

y2_filter_pack.vhd Package containing y-filter coefficients

y2_filter_polyphase.vhd Vertical scaler output pixel filter

y2_scaler.vhd Vertical scaler component

xy2_reg.vhd Video scaler input registers

xy2_scaler.vhd Video scaler top-level component

xy2_scaler_bench.vhd Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. video_file_reader.vhd
2. pipeline_reg.vhd
3. pipeline_shovel.vhd
4. ram_dp_w_r.vhd
5. fifo_sync.vhd
6. x2_buffer.vhd
7. x2_filter_pack.vhd
8. x2_filter_polyphase.vhd
9. x2_scaler.vhd
10. y2_buffer.vhd
11. y2_filter_pack.vhd
12. y2_filter_polyphase.vhd
13. y2_scaler.vhd
14. xy2_reg.vhd
15. xy2_scaler.vhd
16. xy2_scaler_bench.vhd

The VHDL testbench instantiates the XY2_SCALER component and the
user may modify the generic parameters in order to generate the desired
scaled output image.

The source video for the simulation is generated by the video file-reader
component. This component reads a text-based file which contains the
RGB pixel data. The text file is called video_in.txt and should be placed
in the top-level simulation directory.

The file video_in.txt follows a simple format which defines the state of
signals: pixin_val, pixin_vsync, pixin_hsync and pixin on a clock-by-clock
basis. An example file might be the following:

1 1 1 00 11 22 # pixel 0 line 0 (start of frame)
1 0 0 33 44 55 # pixel 1
0 0 0 00 00 00 # don't care!
1 0 0 66 77 88 # pixel 2
.
.
1 0 1 00 11 22 # pixel 0 line 1 etc..

In this example, the first line of of the video_in.txt file asserts the input
signals pixin_val = 1, pixin_vsync = 1, pixin_hsync = 1 and pixin =
0x001122.

The simulation must be run for at least 10 ms during which time an output
text file called video_out.txt will be generated. This file contains a
sequential list of 24-bit output pixels in the same format as video_in.txt.
The example provided scales a 768x576 source test pattern by a factor of
0.833 in the x and y dimensions to give a VGA output image of 640x480
pixels. Figure 5 shows the resulting image from the test.

Performance

The Bilinear Video Scaling Engine was tested with a large number of
scale factors to verify correct operation and to observe the quality of the
output video. The true definition and quality is difficult to show within the
limitations of this document, however, example images can be provided
on request.

The video scaler was also verified using a Xilinx® Spartan6 SP605
development board as a platform. The photo in Figure 6 demonstrates
the scale down of a PAL source image to a small custom video window of
500x400 pixels on an SXGA (1280x1024) background.

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 4 of 5

Figure 5: Output frame from the hardware simulation example
(Scale-down of 768x576 to 640x480)

http://www.zipcores.com/bilinear-video-scaling-engine.html

XY2_SCALER

Bilinear Video Scaling Engine
Rev. 2.1

Synthesis

The files required for synthesis and the design hierarchy is shown below:

● xy2_scaler.vhd
○ xy2_reg.vhd

■ pipeline_reg.vhd
○ x2_scaler.vhd

■ pipeline_shovel.vhd
■ x2_buffer.vhd
■ x2_filter_polyphase.vhd

● pipeline_reg.vhd
○ y2_scaler.vhd

■ pipeline_shovel.vhd
■ y2_buffer.vhd

● ram_dp_w_r.vhd
■ fifo_sync.vhd

● pipeline_reg.vhd
■ y2_filter_polyphase.vhd

● pipeline_reg.vhd

The VHDL core is designed to be technology independent. However, as
a benchmark, synthesis results have been provided for the Xilinx® Virtex6
and Spartan6 FPGA devices. Synthesis results for other FPGAs and
technologies can be provided on request.

Fixing the scale parameters at the scaler input will result in the most
optimum scaler design. In addition, the speed of the design may be
improved by tying the signal pixout_rdy low. This may be possible if the
designer knows that the pipeline downstream of the scaler will always be
able to accept output pixels. Careful attention must be made to the width
of the line stores as this will effect the amount of RAM resource used in
the design.

Trial synthesis results are shown with the generic parameters set to:
line_width = 1024 and log2_line_width = 10. Resource usage is specified
after Place and Route.

VIRTEX 6

Resource type Quantity used

Slice register 690

Slice LUT 738

Block RAM 3

DSP48 12

Occupied Slices 301

Clock frequency (approx) 320 MHz

SPARTAN 6

Resource type Quantity used

Slice register 690

Slice LUT 742

Block RAM 3

DSP48 12

Occupied Slices 288

Clock frequency (approx) 170 MHz

Revision History

Revision Change description Date

1.0 Initial revision 05/02/2009

1.1 Added extra items to key features 12/06/2009

1.2 Updated synthesis results 15/12/2009

1.4 Added scaling formula. Updated source file
descriptions to include shovels

18/02/2010

1.5 Updated synthesis results in line with minor
source code changes

27/01/2012

2.0 Major revision. Simplified loading of scale
parameters. Modified architecture to support
one frame out for one frame in

10/05/2013

2.1 Moved to 16-bit scale parameters to support
resolutions up to 216x 216

11/08/2014

Copyright © 2014 www.zipcores.com Download this VHDL Core Page 5 of 5

Figure 6: Scaler demo lab setup
(Generation of a small 500x400 video window on SXGA background)

http://www.zipcores.com/bilinear-video-scaling-engine.html

