Key Design Features

- Synthesizable, technology independent VHDL Core
- Combined functions $y=\sin (x), y=\cos (x)$
- Input range $-\pi \leq x \leq \pi$
- Output range - $1 \leq \mathrm{y} \leq 1$
- Based on a quadratic polynomial with dynamic coefficients
- Input values as 18 -bit signed fractions in radians
- Output values as 17-bit signed fractions
- Accurate to within 0.00017
- High-speed fully pipelined architecture
- Tiny implementation
- Only 5 clock-cycles latency

Applications

- Fixed-point mathematics
- Quadrature signal generation in digital communications
- Cheaper alternative to using a $65 \mathrm{k} \times 16$-bit LUT (128kbytes)
- Cheaper alternative to CORDIC

Pin-out Description

Pin name	I/O	Description	Active state
clk	in	Synchronous clock	rising edge
en	in	Clock enable	high
x_in [17:0]	in	Input value in radians	data
sin_out [16:0]	out	Output value	data
cos_out [16:0]	out	Output value	data

Functional Specification

Value	Type	Valid range
x_in [17:0]	18-bit signed fraction in [18 15] format	$[-\pi, \pi]$
sin_out [16:0]	17-bit signed fraction in [17 15] format	$[-1,1]$ Accuracy to within 0.0002
cos_out [16:0]	17-bit signed fraction in [17 15] format	$[0,1]$ Accuracy to within 0.0002

Block Diagram

Figure 1: sincos_x function architecture

General Description

SINCOS_X (Figure 1) calculates the sine and cosine of an angle in radians. It has a fully pipelined architecture and uses fixed-point mathematics throughout. Input values are accepted as 18 -bit signed values in the range $-\pi$ to π. Output values are 17 -bit signed values in the range -1 to 1 . For input values outside the specified range, sin_out defaults to 0 and cos_out defaults to -1 .

Input and output values are specified in [18 15] format with 1 sign bit, 2 integer bits and 15 fraction bits. Output values are in [17 15] format with 1 sign bit, 1 integer bit and 15 fraction bits. Internally, the function uses a quarter-wave SIN function core implemented as a $2^{\text {nd }}$ order polynomial with dynamic coefficients. Values are sampled on the rising clock-edge of clk when en is high. The function has a 5 clock-cycle latency.

Functional Timing

Figure 2 demonstrates the computation of $y=\sin (x)$ and $y=\cos (x)$ where x is respectively $0 x 04872$ and $0 x 30066$ (0.56598 and -1.99689 as a decimal fraction). The results for the SIN calculation are 0x044A4 and $0 \times 18 \mathrm{~B} 72$ (0.53625 and -0.91058 in decimal). For the COS calculation the results are $0 \times 06 \mathrm{C} 09$ and $0 \times 1 \mathrm{CB} 1 \mathrm{~B}$ (0.84402 and -0.41324 in decimal).

Figure 2: Timing waveform for the sincos function

Note that the second value of x is stalled by the clock-enable signal being de-asserted for one clock cycle. In the next cycle, the clock-enable is asserted high and normal operation continues. The function has a latency of 5 clock cycles as indicated by edge ' A ' and ' B ' in the timing waveform.

Source File Description

All source files are provided as text files coded in VHDL. The following table gives a brief description of each file.

Source file	Description
sin_x.vhd	Quarter-wave SIN function
sincos_x.vhd	Top-level block
sincos_x_bench.vhd	Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL simulator. The compilation order of the source code is as follows:

1. $\sin x$.vhd
2. sincos x.vhd
3. sincos_x_bench.vhd

The simulation must be run for at least 3 ms during which time an 18 -bit input stimulus in the range 0 to 262143 will be generated. The test terminates automatically.

The simulation generates two text files called sincos_x_in.txt and sincos_x_out.txt. These files contain the input and output samples captured during the course of the test. The results of the test are shown graphically in Figure 3 below:

Figure 3: Plot of test results for sincos_x function

Note the valid input range from $-\pi$ to π. Values outside this range default to 0 for $\sin (x)$ and -1 for $\cos (x)$.

Synthesis

The source files required for synthesis and the design hierarchy is shown below:

- sincos_x.vhd
- \sin _x.vhd

The VHDL core is designed to be technology independent. However, as a benchmark, synthesis results have been provided for the Xilinx® Virtex 6 and Spartan 6 FPGA devices. Synthesis results for other FPGAs and technologies can be provided on request.

Resource usage is specified after Place and Route.

VIRTEX 6

Resource type	Quantity used
Slice register	153
Slice LUT	328
Block RAM	0
DSP48	6
Occupied slices	101
Clock frequency (approx)	200 MHz

SPARTAN 6

Resource type	Quantity used
Slice register	138
Slice LUT	332
Block RAM	0
DSP48	6
Occupied slices	112
Clock frequency (approx)	150 MHz

Revision History

Revision	Change description	Date
1.0	Initial revision	$04 / 05 / 2009$
1.1	Updated synthesis results for Xilinx® 6 series FPGAs	$07 / 06 / 2012$

