
PIPE_DIV

Pipelined Divider with generic width
Rev. 1.2

Key Design Features

● Synthesizable, technology independent VHDL Core

● Function y = a / b

● Input values as signed or unsigned integers

● Output values as signed or unsigned integers

● Configurable numerator and denominator data width

● High-speed fully pipelined architecture with configurable
number of register stages for area/speed trade off

● Quotient, remainder and div_zero outputs

● One output result per clock-cycle (i.e. pipelined operation)

● Capable of clock speeds of 400MHz+ on even basic FPGA
platforms

Applications

● Fundamental building block in digital processing functions

● Division of integers and fixed-point numbers1

● Implementation of the reciprocal function f(x) = 1/x

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

en in Clock enable high

a_in [dw-1:0] in Input numerator data

b_in [dw-1:0] in Input denominator data

quotient [dw -1:0] out Output quotient data

remainder [dw-1:0] out Output remainder data

div_zero out Divide by zero flag high

Generic Parameters

Generic name Description Type Valid range

dw Input data width integer ≥ 2
(dw | 2 = 0)

use_signed Use signed or
unsigned arithmetic

boolean TRUE/FALSE

reg_stages Number of pipeline
register stages

integer ≥ 1
≤ dw

1 For fixed-point numbers then inputs must be pre-scaled by a power of
2. E.g. the division 0.2/0.3 could be done as 51/77 in 8-bit arithmetic.

Block Diagram

General Description

PIPE_DIV (Figure 1) is a pipelined divider with configurable data width.
The design is fully scalable and modular permitting the user to specify
large dividers without compromising maximum attainable clock-speed.

The divider accepts input values as either signed or unsigned integers
depending on the generic setting use_signed. An n-bit numerator and
denominator will generate an n-bit result for the quotient and an n-bit
result for the remainder. The output remainder always takes the sign of
the numerator and is determined by the formula:

Rmd = Num −Quo ∗ Den

Where Rmd, Num, Quo and Den represent the remainder, numerator,
quotient and denominator respectively.

In the case of a divide by zero, then the div_zero flag is asserted at the
divider output and the maximum value possible is returned in the quotient.
The remainder takes the value of the numerator. For example, if dw = 8,
the division -3/0 will return a result of -128 for the quotient and -3 for the
remainder. The division 3/0 would return a remainder of 3 and a quotient
of 127 for signed arithmetic or 255 for unsigned.

Values are sampled on the rising clock-edge of clk when en is high. The
number of register stages in the pipeline may be modified in order to trade
off maximum speed against the total resource used. The overall pipeline
latency of the divider is given by the formula:

Latency = dw / reg _ stages

For example, a 24-bit divider with the number of register stages set to 3
will result in a circuit with 8 clock cycles of latency. In other words, the
result of a division will take 8 clock-cycles to appear at the output. Note
that while the latency may change depending on the implementation, the
throughput is always maintained at one output result per clock.

Copyright © 2011 www.zipcores.com Download this VHDL Core Page 1 of 3

Figure 1: Pipelined Divider Architecture

http://www.zipcores.com/pipelined-divider-with-generic-width.html

PIPE_DIV

Pipelined Divider with generic width
Rev. 1.2

Functional Timing

Figure 2 demonstrates two sequential calculations of 10/-3 and -5/0. In
this example, the parameters have been set to dw = 4, use_signed = true,
reg_stages = 1. The result has a latency of 4 clock cycles.

Source File Description

All source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

pipe_div_shiftsub.vhd Shift-subtract block

pipe_div.vhd Top-level block

pipe_div_bench.vhd Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. pipe_div_shiftsub.vhd
2. pipe_div.vhd
3. pipe_div_bench.vhd

The VHDL testbench instantiates the divider component and the user may
modify the generic parameters as required. The simulation must be run
for at least 2 ms during which time the divider will be driven with a
randomized sequence input values. The test terminates automatically.

The simulation generates two text files called: pipe_div_in.txt and
pipe_div_out.txt. These files respectively contain the input and output
data samples captured at the interfaces during the test.

Figure 3 shows the results of the divider used to implement the function
f(x) = 1/x with the generic parameter dw = 16. Results are shown for the
first 100 samples.

Synthesis

The source files required for synthesis and the design hierarchy is shown
below:

● pipe_div.vhd
○ pipe_div_shiftsub.vhd

The VHDL core is designed to be technology independent. However, as
a benchmark, synthesis results have been provided for the Xilinx Virtex 5
and the Altera Stratix III series of FPGA devices. The lowest and highest
speed grade devices have been chosen in both cases for comparison.

Note that the generic parameter reg_stages will have a significant effect
on the speed and area of the synthesized design. For the fastest possible
design, the generic parameter reg_stages should be set to 1. For the
smallest design, then reg_stages should be set to equal the data width,
dw. In addition, choice of unsigned logic will result in a design with a
slightly smaller area.

Trial synthesis results are shown with the generic parameters set to: dw =
16, use_signed = true, reg_stages = 1.

Resource usage is specified after Place and Route.

VIRTEX 5
Resource type Quantity used

Slice register 801

Slice LUT 704

Block RAM 0

DSP48 0

Clock frequency (worst case) 385 MHz

Clock frequency (best case) 495 MHz

Copyright © 2011 www.zipcores.com Download this VHDL Core Page 2 of 3

Figure 3: Plot of test results for function: f(x) = 1/x
Figure 2: Calculation of a/b

http://www.zipcores.com/pipelined-divider-with-generic-width.html

PIPE_DIV

Pipelined Divider with generic width
Rev. 1.2

STRATIX III
Resource type Quantity used

Register 947

ALUT 751

Block Memory bit 225

DSP block 18 0

Clock frequency (worse case) 350 MHz

Clock frequency (best case) 400 MHz

Revision History

Revision Change description Date

1.0 Initial revision 23/07/2008

1.1 Added new opt_mode generic parameter 02/10/2008

1.2 Renamed opt_mode parameter to
reg_stages. Design now supports any
number of register stages up to the
maximum dw

09/09/2011

Copyright © 2011 www.zipcores.com Download this VHDL Core Page 3 of 3

http://www.zipcores.com/pipelined-divider-with-generic-width.html

