
I2C_MASTER

I2C Master Serial Interface Controller
Rev. 1.5

Key Design Features

● Technology independent IP Core for FPGA and ASIC

● Supplied as human readable VHDL (or Verilog) source code

● Phillips® I2C-bus compliant

● Intuitive command interface featuring a simple valid-ready
handshake protocol

● Master instruction FIFO permits buffering of sequential I2C
requests

● Slave read FIFO permits buffering of slave read data and slave
responses

● Fully configurable clocking allows Standard (100 kHz), Fast
(400 kHz) custom data rates exceeding 20 MHz

● Configurable setup and hold times on the SDA line relative to
the SCL line

● Supports standard 8-bit and 10-bit addressing modes

Applications

● Driving I2C slave devices

● Inter-chip board-level communications

● Standard 2-wire comms between a wide range of I2C
peripherals, micro-controllers and COTs ICs

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

mast_inst[3:0] in Master instruction data

mast_data[7:0] in Master I2C data to be
serialized

data

mast_val in Master instruction valid high

mast_rdy out Master instruction ready
handshake

high

scl i/o I2C bi-directional SCL
clock pin

As per I2C
specification

sda i/o I2C bi-directional SDA
data pin

As per I2C
specification

slv_inst[3:0] out Slave instruction data

slv_data[7:0] out Slave I2C data received
from slave device

data

slv_val out Slave data valid high

slv_rdy in Slave data ready
handshake

high

Block Diagram

Generic Parameters

Generic name Description Type Valid range

t_period SCL clock period (as
number of system
clock cycles)

integer ≥ 4

t_data_su SDA setup/hold time
(as number of system
clock cycles)

integer ≥ 2

wfifo_depth Master instruction
write FIFO depth

integer ≥ 2

wfifo_depth_log2 Master instruction
write FIFO depth log2

integer log2
(wfifo_depth)

rfifo_depth Slave read data FIFO
depth

integer ≥ 2

rfifo_depth_log2 Slave read data FIFO
depth log2

integer log2
(rfifo_depth)

General Description

The I2C_MASTER IP Core is a Philips® I2C compliant serial interface
controller capable of driving a standard two-wire bus in single-master
mode. The controller receives data and instructions via the master
instruction interface. These instructions are then processed by the
controller state-machine in order to generate the appropriate responses
on the SCL and SDA lines.

Likewise, any slave responses on the I2C-bus are captured by the
controller and de-serialized for presentation at the slave read data port.

Copyright © 2016 www.zipcores.com Download this VHDL Core Page 1 of 5

Figure 1: I2C Master serial controller architecture

F
IF

O
 s

ta
ge

 #
0

mast_inst

mast_val

mast_rdy

clk

reset

mast_data

WRITE FIFO

F
IF

O
 s

ta
ge

 #
1

F
IF

O
 s

ta
ge

 #
n

I2C MASTER
CONTROLLER

scl

sda

F
IF

O
 s

ta
ge

 #
0

F
IF

O
 s

ta
ge

 #
1

F
IF

O
 s

ta
ge

 #
n

READ FIFO

PAD

PAD

slv_inst

slv_val

slv_rdy

slv_data

Tristate
Buffers

http://www.zipcores.com/i2c-master-serial-interface-controller.html

I2C_MASTER

I2C Master Serial Interface Controller
Rev. 1.5

The I2C master controller is comprised of three main blocks as described
by Figure 1. These blocks are the master instruction write FIFO, the I2C
controller core and the slave read data FIFO.

The I/O ports SCL and SDA are connected to bi-directional tristate
buffers. Note that when the I2C controller is inactive, both the SCL and
SDA lines will be tristate and as such, these pins should be externally
pulled up as per the I2C specification.

The SCL clock-period is determined by the the generic parameter:
t_period. This parameter specifies the SCL period in system clock cycles.
As an example, if the system clock 'clk' is running at 100MHz and an SCL
clock frequency of 100kHz is required (I2C standard mode), a value of
t_period = 1000 should be specified.

In addition, the generic parameter t_data_su permits the SDA data-line to
be delayed by 'n' system clock cycles relative to the SCL line. In this way,
the SDA setup and hold specification can be modified accordingly.

Figure 2 demonstrates how the parameters t_period and t_data_su effect
the output signals on the I2C-bus. By modifying t_data_su, the user can
ensure a stable data window during the active-high SCL pulse.

Master Write FIFO

Instructions to the I2C master controller are sent via an input FIFO whose
depth is determined by the generic parameter wfifo_depth. The write
FIFO interface operates in accordance with the valid/ready pipeline
protocol meaning that instructions and data are written to the FIFO on the
rising edge of clk when both mast_val and mast_rdy are high1

The write FIFO may be used to 'queue up' a sequence of commands
while current commands are being processed on the bus. As soon as the
write FIFO becomes full then the FIFO will disable the mast_rdy signal
signifying that further requests are not possible. Likewise, the mast_rdy
signal will also be disabled if the slave read-data FIFO becomes full. In
both situations, no further commands will be accepted by the I2C
controller until the FIFOs have emptied.

The instructions to the I2C controller are very intuitive and follow the exact
sequence of commands that the user wishes to appear on the I2C bus.

The following table outlines the set of commands accepted by the
controller via the master write FIFO:

1 See Zipcores application note: app_note_zc001.pdf for more
examples of the valid/ready protocol and it's implementation

MASTER INSTRUCTION INPUT FORMAT

mast_inst[3:0] mast_data[7:0] Description

“0000” [7:0] : 'X' Don't care RESET

Reset controller to initial
conditions

“0001” [7:0] : 'X' Don't care START

Issue a I2C start command
(SCL high, SDA falling edge)

“0010” [7:0] : 'X' Don't care STOP

Issue a I2C stop command
(SCL high, SDA rising edge)

“0011” [7:1] : Slave Address
[0] : R/W flag

ADDR

Write an 8-bit slave address

“0100” [7:0] : Write data WDATA

Write 8-bit data

“0101” [7:0] : 'X' Don't care RDATA

Read 8-bit slave data

“0110” [7:0] : 'X' Don't care MACK

Issue a master ack signal
(SDA low, SCL clock pulse)

“0111” [7:0] : 'X' Don't care NACK

Issue a master no-ack signal
(SDA high, SCL clock pulse)

“1000” [7:0] : 'X' Don't care SACK

Slave ack (SDA tristate, SCL
clock pulse)

Other values [7:0] : 'X' Don't care NULL

Performs no action (other
than filling up the FIFO)

As an example, to write two consecutive bytes to a slave device, the
following sequence of instructions might be be sent to the controller:

A consecutive two byte read might be performed as:

Note that the exact sequence of instructions required will depend on the
functionality of the slave device that is to be addressed. For this reason,
there is no restriction in the ordering of instructions.

Copyright © 2016 www.zipcores.com Download this VHDL Core Page 2 of 5

Figure 2: I2C timing specification

SCL

SDA

t_period

t_data_su t_data_su

START ADDR + R/W SACK WDATA SACK WDATA SACK STOP

"0001" "0011" "1000" "0100" "1000" "0100" "1000" "0010"

START ADDR + R/W SACK WDATA SACK

"0001" "0011" "1000" "0100" "1000"

START ADDR + R/W SACK MACK RDATA NACK STOP

"0001" "0011" "1000" "0101" "0110" "0101" "0111" "0010"

RDATA

http://www.zipcores.com/i2c-master-serial-interface-controller.html

I2C_MASTER

I2C Master Serial Interface Controller
Rev. 1.5

I2C Master Controller Core

The master controller is a state-machine that accepts instructions from
the write FIFO and generates the appropriate signals on the I2C bus.

Immediately after an asynchronous reset of the core, the state machine
starts in the reset state in which both the SCL line and the SDA line are
high-impedance (tristate). On receipt of the first valid instruction, the state
machine will take control of the bus and drive the SCL/SDA lines in
response to the received instructions.

The master controller is also responsible for capturing slave responses on
the I2C bus - in particular, the slave ack (or no-ack) and serial slave data
bits.

Slave Read FIFO

Assuming that the slave FIFO has capacity, all slave ack responses and
slave read data are captured in the slave FIFO. The type of slave
response is identified in the 4-bit instruction identified in the table below:

SLAVE INSTRUCTION OUTPUT FORMAT

slv_inst[3:0] slv_data[7:0] Description

“0101” [7:0] : Slave Data RDATA

“1000” [7:0] : “00000000” SACK

(Slave acknowledge)

“1000” [7:0] : “00000001” SNACK

(Slave no acknowledge)

Other values [7:0] : “00000000” NULL

(not valid)

Note that the slv_inst outputs are identical for a SACK and SNACK. The
user must check the LSB of the read data in order to determine how the
slave responded to the request on the bus. In the case of a slave no-ack,
it is up to the user to decide whether to ignore the response or reissue the
desired command.

Note that if the slave FIFO becomes full then slave responses may get
lost resulting in subsequent responses becoming out of sync.

Functional Timing

Figure 3 shows a simple series of instructions sent to the the controller.
The sequence is: START, ADDR, SACK, STOP. Note that the instruction
FIFO is full after the third instruction and mast_rdy is de-asserted for one
clock cycle. In the following cycle, mast_rdy goes high and the final
instruction is transferred.

Figure 4 demonstrates the corresponding I2C bus signals that are
generated in response to the previous instructions in Figure 3. The
dashed line signifies the point in which the master releases the SDA line.

When the SDA line is released, it is up to the slave device to pull the line
low (ack) or high (no-ack) accordingly.

Figure 5 gives an example of responses on the slave port. The sequence
of responses are: slave no-ack, slave ack, slave read (value 0xBF) and
slave read (value 0x7C). Again, the timing diagram shows how the slave
FIFO output interface may be stalled by driving slv_rdy low.

Copyright © 2016 www.zipcores.com Download this VHDL Core Page 3 of 5

Figure 3: Master instruction interface timing

clk

mast_inst 0x1

Data transfer

mast_data 0x00 0x54 0x00 0x00

0x3 0x8 0x2

mast_val

mast_rdy

Figure 4: I2C bus signals

'0'

SCL

SDA

START '1' '0' '1' '0' '1' '0' '0' SACK STOP

Figure 5: Slave Instruction interface timing

clk

0x8

Data transfer

slv_data 0x01 0x00 0xBF 0x7C

0x8 0x5 0x5

slv_val

slv_rdy

slv_inst

http://www.zipcores.com/i2c-master-serial-interface-controller.html

I2C_MASTER

I2C Master Serial Interface Controller
Rev. 1.5

Source File Description

All source files are provided as text files coded in VHDL. Equivalent
Verilog versions of the code may be provided on request.

Source file Description

i2c_mast_stim.txt Input stimulus text file

i2c_iobuf.vhd Bi-directional tristate buffer

i2c_delay.vhd Adds delay to the SDA line

i2c_fifo.vhd Input/output FIFOs

i2c_master_cont.vhd Main I2C master controller

i2c_master.vhd Top-level block

i2c_slave_dummy.vhd I2C dummy slave device

i2c_master_file_reader.vhd Reads master instructions from a
text file

i2c_master_bench.vhd Top-level test bench

Functional Testing

An example VHDL test bench is provided for use in a suitable VHDL
simulator. The compilation order of the source code is as follows:

1. i2c_iobuf.vhd
2. i2c_delay.vhd
3. i2c_fifo.vhd
4. i2c_master_cont.vhd
5. i2c_mast.vhd
6. i2c_slave_dummy.vhd
7. i2c_master_file_reader.vhd
8. i2c_master_bench.vhd

The testbench instantiates the i2c_master component together with a
dummy slave I2C device and a file-reader module that reads the master
instructions from a text file.

The input text file is called i2_master_stim.txt and should be put in the
top-level simulation directory. The format of the input text file is: 'A B CC'
where 'A' is either '1' or '0' signifying a valid or invalid instruction, 'B' is the
4-bit mast_inst instruction, and 'CC' is the 8-bit mast_data. All values are
specified in hexadecimal.

As an example, in order to send the sequence: START, ADDR, SACK,
STOP to the controller, where the slave address is 0x54, the text file
would be:

1 1 00 # start
1 3 54 # write address 0x54
1 8 00 # slave ack
1 2 00 # stop

In addition to setting up the input stimulus file with the desired master
instructions, the user may also modify the generic parameters on the I2C
master component as required. Careful attention must be made to select
the correct timing parameters in relation to the system clock frequency in
order to conduct a realistic simulation.

In the default set up, the simulation must be run for around 30 ms during
which time the file reader module will drive the I2C master with the input
instructions. A dummy I2C device will generate random slave data on the
I2C bus in response to the master requests.

The simulation generates two text files called: i2c_master_in.txt and
i2c_master_out.txt. These files respectively contain the input and output
data captured at the master instruction and slave data ports during the
course of the test. The contents of these two files may be compared to
verify the operation of the I2C master controller.

Synthesis and Implementation

The files required for synthesis and the design hierarchy is shown below:

● i2c_master.vhd
○ i2c_master_cont.vhd
○ i2c_fifo.vhd
○ i2c_delay.vhd
○ i2c_iobuf.vhd

The VHDL core is designed to be technology independent. However, as a
benchmark, synthesis results have been provided for the Xilinx® 7-series
FPGAs. Synthesis results for other FPGAs and technologies can be
provided on request.

There are no special constraints required for synthesis although reducing
the szie of the FIFOs will result in the fastest and most area efficient
designs. The IP core is completely technology independent.

Trial synthesis results are shown with the generic parameters set to:
t_period = 25, t_data_su = 5, wfifo_depth = 8, wfifo_depth_log2 = 3,
rfifo_depth = 8, rfifo_depth_log2 = 3.

Resource usage is specified after place and route of the design.

XILINX® 7-SERIES FPGAS

Resource type Artix-7 Kintex-7 Virtex-7

Slice register 68 70 70

Slice LUTs 138 181 181

Block RAM 0 0 0

DSP48 0 0 0

Occupied slices 55 56 72

Clock freq. (approx) 300 MHz 350 MHz 400 MHz

Copyright © 2016 www.zipcores.com Download this VHDL Core Page 4 of 5

http://www.zipcores.com/i2c-master-serial-interface-controller.html

I2C_MASTER

I2C Master Serial Interface Controller
Rev. 1.5

Revision History

Revision Change description Date

1.0 Initial revision 01/10/2008

1.1 Added clock-stretching feature 16/02/2010

1.2 Updated synthesis results for Xilinx® 6
series FPGAs

30/05/2012

1.3 Fixed various typos in datasheet. Updated
synthesis results

28/03/2014

1.4 Now supports 4:1 system to SCL ratios.
Optimized design for speed. Removed
clock-stretching option. Updated synthesis
results for Xilinx® 7 series FPGAs.

14/06/2015

1.5 Minor source code optimizations 11/04/2016

Copyright © 2016 www.zipcores.com Download this VHDL Core Page 5 of 5

http://www.zipcores.com/i2c-master-serial-interface-controller.html

