
APPLICATION NOTE : ZC005

Zipcores Video Scalers - FAQ
Rev. 1.8

1) How do the pixin_vsync and pixin_hsync relate to the VSYNC and
HSYNC video timing signals at the DAC?

The signals pixin_vsync and pixin_hsync should not be confused with true
video timing signals; for instance, the VSYNC and HSYNC at a video
DAC or HDMI transmitter IC. Their only purpose is to identify the first
pixel in a frame and first pixel in a line.

The signal pixin_vsync is coincident with the first pixel of an input frame.
The signal pixin_hsync is coincident with the first pixel of an input line.
Likewise, the signals pixout_vsync and pixout_hsync are coincident with
the first pixels of an output frame or line. Figure 1. shows the simplified
timing waveforms.

If it helps, the pixin_vsync and pixin_hsync signals can be considered as
two extra bits of sideband information attached to the pixel. Also
remember that, like the pixel, the sync signals are qualified by the valid.

When valid is low then the syncs are ignored.

Essentially, the video scaler uses a high-speed data-streaming interface.
It only processes active pixels and does not waste bandwidth by
processing 'redundant' periods of horizontal or vertical blanking.

2) Why doesn't the video scaler generate output pixels immediately?

After reset, the scaler will discard input pixels until the first input frame is
found. This will be when pixin_vsync and pixin_val are both high. From
this point onwards, the scaling operation begins.

Depending on the scaler type, it may take up to 2 or 3 lines of input video
before any output video is generated. This is due to the internal line
buffers being pre-filled with pixels.

3) How do the video scalers generate pixels and lines at the start
and at the end of each line or frame?

At the start of a new frame, the video scaler filter taps in x and y are
empty (or at least contain invalid pixels). For this reason the pixels/lines
are treated differently at the frame boundaries.

At the beginning of a new line or frame then the first couple of pixels or
lines are replicated in the filter taps. Likewise, at the end of a line or
frame then the last pixel or line is also replicated. For this reason, the
pixels at the frame boundaries may show some slight discrepancies with
the original image. Please take this into consideration when designing
with the video scalers.

4) The output video looks corrupted. I think I'm doing something
wrong ...

The most common way that the output video can be corrupted is if pixels
are lost or repeated at the scaler interfaces. This can happen when the
valid-ready protocol is used incorrectly. Pixels and syncs are sampled at
the input (or output) of the scaler on a rising clock-edge when valid and
ready are both high. It's important to wire up valid and ready correctly on
both scaler interfaces (irrespective of whether down-scaling or up-scaling
is used). Failure to do so will result in corrupted video. It may be easier
to understand valid-ready signalling in terms of FIFO nomenclature. See
FAQ 6. for an example wiring diagram.

One other way the output video may be corrupted is if the length of line
buffers is not correct. The line buffers must be set large enough to
accommodate a fully scaled output line. For instance, if scaling up from
640x480 to 1920x1080 then the line buffers should be set to 2048 deep
which is the nearest power of 2 for the scaled output line.

5) Is the video scaler compatible with Xilinx AXI or Altera/Intel
Avalon streaming interfaces?

Yes. The valid/ready flow control is directly compatible with the AMBA®4
AXI4-stream protocol as specified by ARM and used extensively on Xilinx
FPGAs. In general, the valid/ready signalling and pixel/sideband data
may be interchanged with the equivalent tvalid, tready and tdata signals
of AXI.

Likewise, the valid/ready interface is also compatible with Avlon-ST used
by Altera/Intel FPGAs. One exception is that the ‘readyLatency’ must be
set to zero for full compatibility with the Zipcores scaler.

6) How can I interface the video scaler to an input FIFO or output
FIFO? Which Xilinx or Altera /Intel FIFOs should I use?

It's very simple to connect a FIFO to the input or output of our video
scalers. Figure 2. shows an example wiring diagram.

On the input side of the scaler, the pixin_val input should be wired to the
'not empty' flag of the FIFO. The pixin_rdy output should be wired to the
read-enable port of the FIFO. On the output side, The pixout_val signal
should be wired to the write-enable port of the FIFO. The pixout_rdy
signal should be wired to the 'not full' flag. The sync signals should be
bundled together with the pixel.

It is important to note that in order for the flow-control to work correctly,
the 'empty' and read flags of the FIFO should have zero latency. That is,
the flags should immediately reflect the state of the FIFO. For instance, if
the empty flag is updated one cycle late, then an input pixel may be
incorrectly read. Likewise, if the full flag is updated one cycle late, then
an output pixel could be lost.

Xilinx® and Altera® offer FIFO solutions in their IP libraries. For
compatibility with the video scalers, the Xilinx FIFO should be generated
with the FIRST-WORD-FALL-THROUGH option (FWFT). In the Altera
case, the SHOW-AHEAD-SYNC-FIFO-MODE should be selected.

Copyright © 2019 www.zipcores.com Page 1 of 4

pixin_val

pixin_vsync

pixin_hsync

clk

pix0 pix1

new frame

pixin_val

pixin_vsync

pixin_hsync

clk

new line

pix0 pix1

Figure 1: pixin_vsync and pixin_hsync timing

APPLICATION NOTE : ZC005

Zipcores Video Scalers - FAQ
Rev. 1.8

7) I've sent one complete frame of video to the scaler but I don't get
one complete frame out. Am I doing something wrong?

For every complete input video frame the scaler will produce one
complete scaled output video frame. If this behaviour is not observed,
then there are a couple of common things to check. One possibility is that
the valid-ready protocol at the interfaces is not being observed correctly.
This will result in pixels being lost at the interfaces. The other is incorrect
scaler parameters. Always ensure that the number of pixels per line and
lines per frame have been specified correctly for the chosen scale factor.

8) Can I multiplex different video sources into the same scaler?

Yes, this is easily done, as long as the video input sources are
multiplexed cleanly between frames. The circuit should be designed so
that pixin_val, pixin_vsync and pixin_data are swapped between each
source at the end of each complete input frame. This is often easiest to
do during vertical blanking periods. Also make sure that the scaling
parameters are correct for each respective source. Figure 3. shows a
possible arrangement for scaling multiple video sources with the same
video scaler.

9) There are long periods when pixin_rdy goes low. Why is this?

There are a number of situations where this might happen. The first
instance is at the start of a new frame. In this case, there is a delay as
the first pixel taps are filled both horizontally and vertically (see FAQ 2).
When up-scaling, pixin_rdy will go low due to the change in ratio.

For optimum performance, it is essential that the input frame size is
correct for the given scaling parameters. In addition, the user must
ensure that the input size frame is at least 16x16 pixels otherwise the
scaler will fail.

10) How do I recover from a corrupted input video frame?

The safest way to recover is to assert a system reset (active low) for at
least 1 system clock cycle. As the system reset is asynchronous, make
sure that the signal is clocked though a couple registers to avoid possible
removal time issues. Once reset, the video scaler will then re-align to the
next start of frame and continue operation as normal.

11) Can I use the video scaler without a frame buffer?

Yes, it's possible to use the video scaler without a frame buffer. However,
the design must ensure that the frame rate in is exactly the same as the
frame rate out. If this is not the case, then the input and output video will
become out of sync and eventually the system will fail.

In order to maintain the correct relationship between input and output
frame rates, then the input pixel clock and the output pixel clock must
have a fixed relationship. Most FPGAs have PLL resources that easily
allow multiple clocks to be generated from a single source.

For instance, consider the case where a VGA input source at 60Hz frame
rate is scaled-up to XGA at 60Hz. The VGA pixel clock is 25MHz and the
output XGA pixel clock is 65MHz. A PLL may be used with the ratio 13/5
to generate the 65MHz pixel clock from the 25MHz clock source. In this
way, both input and output pixel clocks are related and the input and
output video will not become out of sync.

In addition, when using the scaler without a frame buffer, make sure that
there is enough input buffering for a few lines of video (see FAQ 2). Input/
output buffering is normally implemented using a FIFO arrangement
similar to that shown in FAQ 6.

12) Can I change the scale parameters on-the-fly?

The scale parameters can be changed on a frame-by-frame basis if
needed. The only requirement is that the user must assert the system
reset after the parameters are changed. This allows the scaler to re-
synchronize to the new parameters and lock to the next start of frame.

Generally it's convenient to change the parameters and toggle the reset
during vertical blanking when there are no active pixels. This will ensure
uninterrupted operation.

13) Is the scaler IP Core compatible with all FPGA and ASIC
vendors? Can you give me timing and area figures for a specific
technology?

The video scalers are provided as generic VHDL (or Verilog) RTL source
code that is compatible with all major FPGA vendors and technologies.
Specific timing and area figures can be provided on request.

14) Is it possible to use the scaler for simple greyscale operation?
What about support for different pixel widths for interfacing with
different cameras and sensors?

Our video scalers were designed for full 3-channel RGB operation such
as RGB444 or RGB888 for example. However, single-channel operation
is easily implemented by using only one of the available RGB channels;
for example when implementing greyscale video applications.

In addition, the user should hard-wire the unused input channels to zero
and also leave the unused output channels open. In this way, the unused
channels will be optimized away during synthesis.

Copyright © 2019 www.zipcores.com Page 2 of 4

pixout
pixout_vsync
pixout_hsync

pixout_val

pixout_rdy*

VIDEO
SCALER

pixin
pixin_vsync
pixin_hsync

pixin_val

pixin_rdy

26
datain

wr_en

full

dataout

empty

rd_en

INPUT PIXEL
FIFO

26 26
datain

wr_en

full

dataout

empty

rd_en

OUTPUT PIXEL
FIFO

26

* May tie pixout_rdy 'high' if output FIFO never fills

Figure 2: Video scaler FIFO wiring

Frame
A2

Frame
A1

Frame
A0

Frame
B2

Frame
B1

Frame
B0

M
U
X

Frame
A0

Frame
B0

Frame
A1

Frame
B1

Frame
A2

Frame
B2

Video
Source B

Video
Source A

To video scaler

Figure 3: Multiplexing dual video streams into the video scaler

APPLICATION NOTE : ZC005

Zipcores Video Scalers - FAQ
Rev. 1.8

15) Is there an optimum choice of scaling factor for best image
quality?

As per the datasheet, the scale factors should be specified as pitch_x and
pitch_y where:

pitch=(input resolution
output resolution

)∗212

The calculated pitch for x and y should be rounded to the nearest whole
number. However, there is one caveat. If the calculated pitch results in a
number that is an exact power of 2, then the value should be adjusted up
or down by a small margin in order to prevent the filter from ‘ringing’ at
exact harmonics of 2N.

For example, if the pitch is calculated as 1024 (scale down by exactly 4)
then choose a number either side of 1024 instead. Prime numbers are
good choices, so a value of 1021 or 1031 would be preferred values in
this case for the best possible image quality.

16) Can I use two video scalers in parallel to accommodate higher
pixel clock rates on lower-cost FPGAs; for example, in 4K UHD
applications?

For video standards such as 4K (UHD) then pixel clock frequencies of
500MHz+ are generally required. Although such pixel rates are attainable
using higher-end devices, it does become a limitation on lower-cost,
lower-performance FPGAs.

One solution to this problem is to use two (or more) video scalers in
parallel with each scaler processing pixels at half the pixel clock rate. The
way to do this is to split each incoming video line into two and scale each
half-line independently. After scaling, the separate halves of the image
are then joined together again using a multiplexer at full pixel-clock rate.

One issue that arises from this approach is that there can be a
discontinuity between the left and right parts of the scaled images when
the two halves are joined back together. This is especially the case when
scaling up by large factors; for instance when scaling from SD to UHD.

In order to alleviate this problem, the best approach is to scale a bit more
than half the number of pixels in the left and right sections of the source
image. The resulting left and right sections are then clipped and joined to
form a clean transition down the middle of the scaled image.

In this example, an arbitrary image frame of 300 x 300 pixels is used as a
source image. A scale factor of x 5.333 was chosen in the horizontal and
vertical dimensions resulting in an output image of 1600 x 1600 pixels.
Figure 4 describes the various steps involved in order to achieve a clean
output image.

(If help is needed with the general circuit architecture, then please contact
Zipcores for more information and we would be pleased to offer design
assistance).

Copyright © 2019 www.zipcores.com Page 3 of 4

300300

300

156

156

6-pixel overlap
left/right

832

LEFT RIGHT

SCALED IMAGE
LEFT

832

16
00

1600

SCALED IMAGE
RIGHT

Scale each half
of the image

in parallel

x 5.333

Clip excess pixels
on left/right

and join

1600

1600

32-pixel excess
that must be

clipped

No visible discontinuity
at the left/right

image boundary

FINAL SCALED IMAGE

Figure 4: Split-image scaling example using 2 x
scalers in parallel

APPLICATION NOTE : ZC005

Zipcores Video Scalers - FAQ
Rev. 1.8

Revision History

Revision Change description Date

1.0 Initial revision. 17/08/2009

1.1 Added FAQ 6,7. 22/01/2010

1.2 Added FAQ 8,9. 09/03/2010

1.3 Added FAQ 10. Updated logos and fixed
typos.

23/08/2011

1.4 Added FAQ 11. Some minor corrections and
additions to text.

21/01/2013

1.5 Added FAQ 12. Modified 11 in keeping with
new code changes.

20/05/2013

1.6 Added more FAQs about AXI and Avalon-ST
interface compatibility. Added note on
greyscale operation.

13/10/2017

1.7 Updated FAQs 3 & 4. Added FAQ 15
regarding scale factors.

14/01/2019

1.8 Added FAQ 16. 05/03/2019

Copyright © 2019 www.zipcores.com Page 4 of 4

