
ALIAS_FILTER

Digital Video Anti-aliasing filter IP Core
Rev. 1.3

Key Design Features

● Technology independent soft IP Core for FPGA, ASIC and SoC
devices

● Supplied as human-readable VHDL (or Verilog) source code

● Fully pipelined architecture with simple flow control and AXI4-
compatible data streaming interfaces

● Supports all image resolutions up to 216 x 216 pixels

● Support for 5 different low-pass filter responses including, box
blur, low-cost smoothing, Gaussian and custom kernels

● Features a 3 x 3 image filter

● Input / output rate of 1 x 24-bit pixel per clock

● No frame buffer required

● Small implementation size

● Support for 300 MHz+ operation on basic FPGA and SoC
devices1

Applications

● Low-pass filtering of digital video to remove high frequency
artefacts such as jagged edges, stepped lines and Moiré
interference patterns

● Optimization of video from image sensors and cameras

● Forms an essential stage when downscaling and upscaling by
large factors. For instance, 4K video to HD or SD and vice-
versa

Generic Parameters

Generic name Description Type Valid range

line_width Width of linestores in
pixels

integer 24 < pixels < 216

log2_line_width Log2 of linestore width integer log2(line_width)

kernel_type Anti-alias filter kernel
selection

integer 0: Cheap box
blur

1: Weighted
center

2: Weighted
cross hairs

3: Gaussian
blur

4: True box blur

1 AMD / Xilinx® 7-series used as a benchmark

Block Diagram

Pin-out Description

Pin name I/O Description Active state

clk in Synchronous clock rising edge

reset in Asynchronous reset low

pixels_per_line in Number of pixels per line
Range: 24 < lines < 216

data

lines_per_frame in Number of lines per frame
Range: 24 < lines < 216

data

pixin [23:0] in 24-bit RGB 8:8:8 pixel in data

pixin_vsync in Vertical sync in
(Coincident with first pixel
of input frame)

high

pixin_hsync in Horizontal sync in
(Coincident with first pixel
of input line)

high

pixin_val in Input pixel valid high

pixin_rdy out Ready to accept input pixel
(Handshake signal)

high

pixout [23:0] out 24-bit RGB 8:8:8 pixel out data

pixout_vsync out Vertical sync out
(Coincident with first pixel
of output frame)

high

pixout_hsync out Horizontal sync out
(Coincident with first pixel
of output line)

high

pixout_val out Output pixel valid high

pixout_rdy in Ready to accept output
pixel (Handshake signal)

high

Copyright © 2023 www.zipcores.com Download this IP Core Page 1 of 5

Figure 1: Simplified anti-alias digital video filter architecture

clk

reset

pixin

pixin_vsync

pixin_hsync

pixin_rdy

24

pixin_val

LINE
BUFFER

24
pixout

pixout_vsync

pixout_hsync

pixout_val

3 x 3
FILTER KERNEL

line 0

line 1

line 2

p
ix

el
s_

p
er

_
lin

e

lin
e

s_
pe

r_
fr

a
m

e

lin
e

_
w

id
th

lo
g

2
_

lin
e

_w
id

th

ke
rn

el
_

ty
p

e
(0

,1
,2

,3
,4

)

A3 A2 A1

B3 B2 B1

C3 C2 C1

pixout_rdy

http://www.zipcores.com/anti-aliasing-digital-video-filter.html

ALIAS_FILTER

Digital Video Anti-aliasing filter IP Core
Rev. 1.3

General Description

The ALIAS_FILTER IP Core (Figure 1) is a fully pipelined anti-aliasing
filter for use in digital video applications. The design implements a low-
pass filter response on the source video in order to alleviate problems
such as jagged edges, stepped lines and Moiré interference patterns.
This is especially important when downscaling and upscaling video by
large factors.

Internally, the circuit uses a 3x3 pixel filter kernel with 5 different possible
filter settings. The input and output pixels are 24-bit in RGB 8:8:8 format.
The image size is fully programmable with support for up to 216 x 216

pixels.

Pixels flow into the IP Core in accordance with the valid-ready pipeline
protocol2. Input pixels and syncs are sampled on the rising edge of clk
when pixin_val and pixin_rdy are both high. Likewise, at the output
interface, pixels and syncs are sampled on a the rising edge of clk when
pixout_val and pixout_rdy are both high.

Filter kernel selection

The kernel_type parameter modifies the low-pass filter response of the
anti-aliasing filter. Figure 2 below shows the 5 possible filter
configurations available:

2 See Zipcores application note: app_note_zc001.pdf for more
examples of how to use the valid-ready pipeline protocol

Example of image filtering

Figure 3 shows the general result of low-pass filtering the source image.
Notice the absence of stepped lines and ‘pixelated’ edges in the output
image.

Image resolution

The size of the input source image is fully programmable and is specified
in the parameters: pixels_per_line and lines_per_frame. The maximum
frame size supported is 216 x 216 pixels. The frame size parameters may
be changed on a frame-by-frame basis if necessary.

It is recommended that a system reset is asserted once the parameters
have been changed in order to avoid possible image corruption. This is
often convenient to do during the vertical blanking period of a live video
stream. After reset, the IP Core will start generating output pixels after
the next clean input frame.

Copyright © 2023 www.zipcores.com Download this IP Core Page 2 of 5

Figure 2: Possible user filter settings

1/8 1/8 1/8

1/801/8

1/8 1/8 1/8

1/16 1/16 1/16

1/161/21/16

1/16 1/16 1/16

0 1/8 0

1/81/21/8

0 1/8 0

1/16 1/8 1/16

1/81/41/8

1/16 1/8 1/16

Type 0:
Cheap box blur

Type 2:
Weighted cross hairs

Type 3:
Gaussian blur

Type 4:
True box blur

Type 1:
Weighted center

1/9 1/9 1/9

1/91/91/9

1/9 1/9 1/9

Figure 3: Anti-alias filtering example using the
'cheap box blur setting'. Image (a) before an (b)

after filtering

http://www.zipcores.com/anti-aliasing-digital-video-filter.html

ALIAS_FILTER

Digital Video Anti-aliasing filter IP Core
Rev. 1.3

The generic parameters line_width and log2_line_width must also be set
correctly to accommodate the maximum line length of the input image.
The line width must be specified as the nearest power of 2. For instance,
1024, 2048, 4096 etc.

Functional Timing

The functional timing of the input and output interfaces follows a simple
flow-control protocol with a ‘valid’ and ‘ready’ signal. These signals are
compatible with the t_valid and t_ready signals used in the AMBA / AXI4-
stream adopted by ARM and many other IP Core vendors.

Input interface timing

Figure 4 shows the signalling at the start of a new frame. The first line of
a new frame begins with pixin_vsync and pixin_hsync asserted high
together with the first pixel. Note that the signals pixin, pixin_vsync and
pixin_hsync are only valid if pixin_val is also asserted high. For
demonstration purposes, the diagram also shows what happens when
pixin_rdy is de-asserted. In this case, the pipeline is stalled and the
upstream interface must hold-off before pixin_rdy is re-asserted.

Figure 5 shows the signalling at the start of a new line. Note that the
timing diagram is the same as for the start of a new frame with the
exception that pixin_vsync is held low while pixin_hsync is held high
together with the first valid pixel.

Output interface timing

The output interface timing is identical to the input timing. Figures 6 and 7
show the signals at the beginning of an output frame and output line
respectively. In addition, Figure 7 gives an example of an invalid output
pixel with pixout_val asserted low for one clock cycle. In this instance the
downstream interface must ignore the pixel until pixout_val is re-asserted
high.

As an additional note, if the downstream interface is always capable of
accepting pixels, then the user may choose to tie the pixout_rdy signal to
logic ‘1’. This will also result in a slightly optimized design in terms of
resource use and maximum attainable clock frequency.

Copyright © 2023 www.zipcores.com Download this IP Core Page 3 of 5

Figure 4: Start of a new input frame

Pixel 0

clk

pixin

Example of a pipeline stall

Pixel 1 Pixel 2 Pixel 3 Pixel 4

pixin_val

pixin_hsync

pixin_rdy

pixin_vsync

 Start of new frame

Figure 5: Start of a new input line

Pixel 0

clk

pixin Pixel 1 Pixel 2 Pixel 4 Pixel 5

pixin_val

pixin_hsync

pixin_rdy

pixin_vsync

 Start of new line

Pixel 3

Figure 6: Start of a new output frame

Pixel 0

clk

pixin Pixel 1 Pixel 2 Pixel 4 Pixel 5

pixin_val

pixin_hsync

pixin_rdy

pixin_vsync

 Start of new line

Pixel 3

Figure 7: Start of a new output line

Pixel 0

clk

pixout Pixel 1 Pixel 2 Pixel 4

pixout_val

pixout_hsync

pixout_rdy

pixout_vsync

 Start of new output line

Example of an invalid pixel

Pixel 3

http://www.zipcores.com/anti-aliasing-digital-video-filter.html

ALIAS_FILTER

Digital Video Anti-aliasing filter IP Core
Rev. 1.3

Source File Description

The source files are provided as text files coded in VHDL. The following
table gives a brief description of each file.

Source file Description

video_in.txt Text-based source image file

pipeline_reg.vhd Pipeline register component

fifo_sync.vhd Synchronous FIFO

video_file_reader.vhd Reads image file into test bench

ram_dp_w_r.vhd Dual-port RAM component

alias_buffer.vhd Line buffer component

alias_kernel.vhd 3x3 anti-aliasing filter kernel

alias_filter.vhd Top-level component

alias_filter_bench.vhd Top-level test bench

Functional Testing

An example VHDL testbench is provided for use in a suitable hardware
simulator. The compilation order of the source code is the same order as
the source code file description (above).

The testbench instantiates the alias_filter.vhd component and the user
may modify the generic parameters as required. In particular, the user
may choose one of the five different filter kernel types available as
described in figure 2. The frame size has been set to VGA (640x480)
pixels.

The input source image for the simulation is generated by the
video_file_reader.vhd component. This component reads a text file that
contains the discrete RGB pixels. The text file is called video_in.txt and
should be placed in the top-level simulation folder.

The text file follows a simple format which defines the state of the signals:
pixin_val, pixin_vsync, pixin_hsync and pixin (R, G, B) on a clock-by-
clock basis. An example file might be the following:

1 1 1 4F 52 55 # pixel 0 line 0 (start of frame)
1 0 0 12 73 71 # pixel 1
1 0 0 2C 52 18 # pixel 2
1 0 0 B9 72 88 # pixel 3

.

.

.

1 0 1 16 72 23 # pixel 0 line 1 (start of line)
1 0 0 18 50 AD # pixel 1
1 0 0 2E 71 F5 # pixel 2
1 0 0 29 4D 29 # pixel 3 etc ..

In this example the first line of the video_in.txt file asserts the input
signals pixin_val = 1, pixin_vsync = 1, pixin_hsync = 1 and pixin =
0x4F5255

.

In the example simulation shipped with the source code, a sample
640x480 (VGA) image is processed by the anti-aliasing IP Core. The
simulation must be run for at least 10 ms during which time an output text
file called video_out.txt is generated3. This file contains a sequential list
of 24-bit RGB output pixels in a similar format to video_in.txt.

Figure 8 shows the input and output images of the simulation with
kernel_type set to ‘0’.

(Note: As it’s difficult to see the key differences within the context of this
low-resolution document, high quality images may be provided on
request. Please contact Zipcores customer support for more information).

3 PERL scripts for generating and processing input and output text files
are provided with the IP Core package

Copyright © 2023 www.zipcores.com Download this IP Core Page 4 of 5

Figure 8: Simulation results before (a) and after (b) filtering

http://www.zipcores.com/anti-aliasing-digital-video-filter.html

ALIAS_FILTER

Digital Video Anti-aliasing filter IP Core
Rev. 1.3

Synthesis and Implementation

The files required for synthesis and the design hierarchy is shown below:

● alias_filter.vhd
○ alias_buffer.vhd

■ ram_dp_w_r.vhd
○ alias_kernel.vhd
○ fifo_sync.vhd

■ pipeline_reg.vhd

The IP Core is designed to be technology independent. However, as a
benchmark, synthesis results have been provided for the AMD / Xilinx®
7-series FPGA devices. Synthesis results for other FPGAs, SoCs and
technologies can be provided on request.

There are no special constraints required for synthesis. The IP Core is
completely technology independent.

Trial synthesis results are shown with the generic parameters set to:
line_width = 2048, log2_line_width = 11, kernel_type = 0.

Resource usage is specified after place and route.

AMD / XILINX® 7-SERIES FPGAS

Resource type A-7 K-7 V-7 US+

Registers 532 532 532 532

LUTs 715 715 788 847

Block RAM 7.5 7.5 7.5 7.5

DSPs 0 0 0 0

Occupied Slices 264 260 261 151 (CLB)

Clk freq. (approx) 200 MHz 300 MHz 350 MHz 500 MHz

Revision History

Revision Change description Date

1.0 Initial revision. 12/08/2014

1.1 Addition of new filter kernel types. 29/04/2015

1.2 First official release. 16/08/2023

1.3 Included new test source images. Minor
source-code changes including comments
for the different filter kernel types.

19/12/2023

Copyright © 2023 www.zipcores.com Download this IP Core Page 5 of 5

http://www.zipcores.com/anti-aliasing-digital-video-filter.html

